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Abstract. We study the antiferromagnetic spin chain with both dimerization and frustration.
The classical ground state has three phases, a Néel phase, a spiral phase and a collinear phase,
which we study through a nonlinear sigma-model approach. In the spiral phase, the field theory
becomes SO(3) × SO(3) and Lorentz invariant at long distances, a model which is exactly
solvable. The low-energy spectrum is doubly degenerate with massive ‘elementary’ spin-1/2
particles and ‘two-particle’ triplet and singlet physical excitations. The field theory also supports
Z2 solitons which lead to a double degeneracy of the ground state for half-integer spins (when
there is no dimerization).

Antiferromagnets in low dimensions have been extensively studied in recent years, partly
because of their possible relevance to high-Tc superconductors and partly due to the variety
of theoretical tools which have become available. The latter include nonlinear sigma-model
(NLSM) field theories [1–6], Schwinger boson mean-field theories [7], exact diagonalization
of small systems [8], and the density matrix renormalization group (DMRG) method [9–13].
In one dimension, NLSM theories in particular have received special attention ever since
Haldane [1] conjectured that integer-spin models would have a gap (unlike half-integer-spin
chains), and this prediction was verified experimentally for the compound NENP [14].

In this paper, we study a general Heisenberg spin chain with both dimerization (an
alternation δ of the nearest-neighbour (nn) couplings) and frustration (a next-nearest-
neighbour (nnn) couplingJ2). Even classically (i.e. as the spinS → ∞), we find that
the system has a rich ground-state ‘phase diagram’, with three distinct phases, a Néel
phase, a spiral phase and a collinear phase (defined below) [15]. For large but finiteS,
long-wavelength fluctuations about the classical ground state can be described by nonlinear
field theories. These field theories are explicitly known in the Néel phase [1, 2] and in the
spiral phase (forδ = 0) [5, 6]. Here we also present the theory for the collinear phase
(explicitly for δ = 1, although we argue that the qualitative features persist forδ 6= 1).
While the Ńeel phase has been extensively studied, various aspects like the ground-state
degeneracy and the low-energy spectrum are not well understood either in the spiral or
collinear phases.

We first recapitulate the results of the field theory and the renormalization group (RG)
analysis in the Ńeel and spiral phases. For the spiral phase, we use a (previously derived)
one-loopβ-function to show that the field theory for an arbitraryJ1–J2 model flows to
an SO(3) × SO(3)-symmetric and Lorentz invariant theory with an analytically known
spectrum [16]. Wepredict that the low-energy excitations of integer-spin chains in the
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spiral phase should be doubly degenerate triplets and singlets. We compare the predicted
spectrum with the numerically known spectra for theS = 1 andS = 1/2 models. We
also discuss how the presence of Z2 solitons (supported by the field theory) affects the
ground-state degeneracy for integer and half-integer spins.

Figure 1. A classical phase diagram of theJ1–J2–δ spin chain.

The Hamiltonian for the frustrated and dimerized spin chain is given by

H = J1

∑
i

(1+ (−1)iδ)Si · Si+1+ J2

∑
i

Si · Si+2 (1)

whereS2
i = S(S + 1)h̄2, the couplingsJ1, J2 > 0, andδ lies between 0 and 1. Classically

(for S →∞), the ground state is a coplanar configuration of the spins with energy per spin
equal to

E0 = S2

[
J1

2
(1+ δ) cosθ1+ J1

2
(1− δ) cosθ2+ J2 cos(θ1+ θ2)

]
(2)

where θ1 is the angle between the spinsS2i andS2i+1 and θ2 is the angle betweenS2i

andS2i−1. Minimization of the classical energy with respect to theθi yields the following
phases.

(i) Néel: this phase hasθ1 = θ2 = π and is stable for 1− δ2 > 4J2/J1.
(ii) Spiral: here, the anglesθ1 andθ2 are given by the upper and lower signs respectively

in

cosθi = − 1

1± δ
[

1− δ2

4J2/J1
± δ

1− δ2

4J2

J1

]
(3)

whereπ/2< θ1 < π and 0< θ2 < π . This phase is stable for 1−δ2 < 4J2/J1 < (1−δ2)/δ.
(iii) Collinear: this phase (which needs both dimerization and frustration) is defined to

haveθ1 = π andθ2 = 0. It is stable for(1− δ2)/δ < 4J2/J1.

These three phases are depicted in figure 1.
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We now study the spin-wave spectrum around the classical ground state [17]. A detailed
analysis will be presented elsewhere [18]. In the Néel phase, we recover the well known
result that there are two gapless modes with equal velocities. In the spiral phase, we find
three modes, two with the same velocity describing out-of-plane fluctuations and one with a
higher velocity describing in-plane fluctuations. In the collinear phase, we get two gapless
modes with equal velocities just as in the Néel phase. The three phases also differ in the
behaviour of the spin–spin correlation functionS(q) in the classical limit.S(q) is peaked
at q = π in the Ńeel phase, forπ/2 < q < π in the spiral phase and atq = π/2 in the
collinear phase. Even forS = 1/2 and 1, DMRG studies have seen this feature ofS(q)

in the Ńeel and spiral phases [10]. The collinear phase has been observed numerically in
reference [11], which refers to it as the↑↑↓↓ phase.

Figure 2. A plot of ln(ζ/a)/S versusJ2/J1 for δ = 0.

To study nonperturbative aspects, the NLSM approach is convenient since the RG can
be used to improve naive perturbation results. The NLSM is well known in the Néel
phase [1, 2]. It is a scalar field theory withc = 2J1aS

√
1− δ2− 4J2/J1 as the spin-

wave velocity, g2 = 2/S
√

1− δ2− 4J2/J1 as the coupling constant and a topological
term. This field theory is gapless forθ = π mod 2π (where θ = 2πS(1 − δ) is the
coefficient of the topological term), with the correlation function falling off as a power at
large separations, and is gapped otherwise. For the gapped theory, the correlations decay
exponentially with correlation lengthζ , whereζ is found from a one-loop RG calculation
to be ζ/a = exp(2π/g2). Hence ln(ζ/a) = πS

√
1− δ2− 4J2/J1. For completeness, this

is plotted in figure 2 forδ = 0 and 4J2/J1 < 1.
Recently, the spiral phase has also been studied forδ = 0 [5, 6]. The classical ground

state hasθ1 = θ2 = θ = cos−1(−J1/4J2). The field variable describing fluctuations about
the classical ground state is an SO(3) matrix R(x, t) related to the spin variable at theith
site as(Si )a = SRabnb, wherea, b = 1, 2, 3 are the components along thex̂-, ŷ- and
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ẑ-axes, andn is a unit vector given by

ni = x̂ cos iθ + ŷ sin iθ + a`
|x̂ cos iθ + ŷ sin iθ + a`| . (4)

The unit vectorni describes the orientation of theith spin in the classical ground state and
a` represents the small deviation from the classical configuration. The resultant Lagrangian
density has been derived in reference [6]. It is SO(3)L × SO(2)R symmetric and can be
parametrized as

L = 1

2c
tr(∂tRT∂tR P0)− c

2
tr(∂xRT∂xR P1) (5)

where

c = J1Sa(1+ 4J2/J1)

√
1− J 2

1 /16J 2
2

and P0 and P1 are diagonal matrices with entries given by, forP0, (1/2g2
2, 1/2g2

2, 1/g2
1 −

1/2g2
2) and, forP1, (1/2g2

4, 1/2g2
4, 1/g2

3 − 1/2g2
4). The couplingsgi are found to be

g2
2 = g2

4 =
1

S

√
4J2+ J1

4J2− J1

g2
3 = 2g2

2

g2
1 = g2

2[1+ (1− J1/2J2)
2].

(6)

Perturbatively, there are three gapless modes, one with velocitycg2/g4 and two with velocity
cg1/g3. Note that the theory is not Lorentz invariant becauseg1g4 6= g2g3. However, the
theory is symmetric under SO(3)L×SO(2)R where the SO(3)L rotations mix the rows of the
matrix R and the SO(2)R rotations mix the first two columns. SO(3)L is the manifestation
in the continuum theory of the spin symmetry of the original lattice model. SO(2)R arises
in the field theory because the ground state is planar, and the two out-of-plane modes are
identical and can mix under an SO(2) rotation. The Lagrangian is also symmetric under
the discrete symmetry parity which transformsR(x)→ R(−x)P with P being the diagonal
matrix with entries (−1, 1,−1). An important point to note is that there is no topological
term present here (unlike in the NLSM in the Néel phase) and, hence, no apparent distinction
between integer and half-integer spins. There is, however, a distinction due to solitons, as
we will show later.

At larger distance scalesl, the effective couplingsgi(l) evolve according to theβ-
functions β(gi) = dgi/dy where y = ln(l/a). We had earlier computed the one-loop
β-functions using the background-field formalism [5]. Theβ-functions are given by

β(g1) = g3
1

8π

[
g2

1g3g4

g2
2

2

g1g4+ g2g3
+ 2g1g3

(
1

g2
1

− 1

g2
2

)]
β(g2) = g3

2

8π

[
g3

1g3

(
2

g2
1

− 1

g2
2

)2

+ 4g1g3

(
1

g2
2

− 1

g2
1

)]

β(g3) = g3
3

8π

[
g2

3g1g2

g2
4

2

g1g4+ g2g3
+ 2g1g3

(
1

g2
3

− 1

g2
4

)]
β(g4) = g3

4

8π

[
g3

3g1

(
2

g2
3

− 1

g2
4

)2

+ 4g1g3

(
1

g2
4

− 1

g2
3

)]
.

(7)

We numerically investigate the flow of these couplings using the initial valuesgi(a) given
in equation (6). These are different from the initial values used in reference [5], where
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we had earlier studied the evolution of these equations for the Majumdar–Ghosh model
(J2 = J1/2) [19]. We find that the couplings flow such thatg1/g2 andg3/g4 approach 1,
i.e., the theory flows towards SO(3)L × SO(3)R and Lorentz invariance. Finally, at some
length scaleζ , the couplings blow up indicating that the system has become disordered. At
the one-loop level,ζ depends onJ2/J1 but S can be scaled out. The situation is, in fact,
qualitatively similar to what happens in the Majumdar–Ghosh model.

In figure 2, we show the numerical results for ln(ζ/a)/S versusJ2/J1 for 4J2/J1 > 1.
Note that as 4J2/J1 → 1 from either side (the Ńeel phase for integer spin or the spiral
phase for any spin), ln(ζ/a) → 0, i.e., the correlation length goes through a minimum.
Since 4J2/J1 = 1 separates the Ńeel and spiral phases, we may call it a disorder point. (For
generalδ, we have a disorder line 4J2/J1+ δ2 = 1 and the correlation length is a minimum
on the line separating the two gapped phases.)

The spiral phase is therefore disordered for any spinS with a length scaleζ . The theory
flows to the principal chiral model with SO(3)L × SO(3)R and Lorentz invariance at long
distances. This model is exactly integrable and its spectrum is analytically known [16]. For
all spinsS, the ‘elementary’ particle is a massive doublet that transforms according to the
spin-1/2 representation of SU(2). The long-wavelength, low-energy physical excitations
are ‘two-particle’ states formed from these elementary particles and are spin-triplet and
spin-singlet states†. Moreover, as explained in reference [16], these excitations are doubly
degenerate. A naive perturbative analysis of the field theory, on the other hand, just repro-
duces the spin-wave prediction of three modes, two with the same velocity and one with
a higher velocity. The power of the field theory approach is precisely this ability to probe
the infra-red nonperturbative limit.

Interestingly, the spin-triplet and the spin-singlet excitations and their double degeneracy
have actually been seen in numerical studies of theS = 1 model [6, 13]. This is a remarkable
proof of the validity of the field theoretic approach, at least for integer spins. It would be
worthwhile to verify the spectrum numerically for other integer spins as well.

DMRG studies [9, 10] of spin-1/2 models, on the other hand, have not seen this
double degeneracy in the spectrum, although they also find a triplet to be the lowest-energy
excitation over the ground state. However, as we shall explain below, for half-integer spins,
the ground state itself is doubly degenerate. Hence the excitations about each of the ground
states is only singly degenerate. This feature can also be seen in the exact solution of the
Majumdar–Ghosh model [19], although it is not in the spiral phase. The ground state is
doubly degenerate and the excitation spectrum consists of a spin triplet and a spin singlet
formed from the ‘elementary’ spin-1/2 solitons [21], in accordance with the field theory
solution.

Since the field theory is based on an SO(3)-valued fieldR(x, t) andπ1(SO(3)) = Z2,
it allows Z2 solitons. The classical field configurations come in two distinct classes with
soliton number equal to zero or one. An example of a zero-soliton configuration is given
by R0(x, t) = I, the identity matrix; this configuration has zero energy and is a classical
ground state, A one-soliton configuration is given by

R1(x, t) =
( cosθ(x) sinθ(x) 0
− sinθ(x) cosθ(x) 0

0 0 1

)
(8)

whereθ(x) goes from 0 to 2π asx goes from−∞ to +∞. (For convenience, we choose
θ(x) = 2π − θ(−x).) In terms of spins, this corresponds to progressively rotating the spins

† To apply these conclusions to finite spin chains, it is required that the number of spinsN be even, so that
periodic boundary conditions can be applied without frustration [20].
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so that the spins at the right-hand end of the chain are rotated by 2π with respect to spins
at the left-hand end. Since the derivative∂xθ can be made vanishingly small, the difference
between the energies of the configurationsR0(x, t) and R1(x, t) can be made arbitrarily
small, and one might expect the ground state to be doubly degenerate for infinite system
size. To be more explicit, imagine space to be a line running fromx = −L/2 to x = L/2,
and takeθ(x) = 2π(x + L/2)/L in equation (8); thusR1 = I at the end points. Then
R1(x, t) is a solution of the Euler–Lagrange equations of motion following from equation
(5). The energy of this configuration is of order 1/L, and it goes to zero if we let the system
sizeL→∞.

However, this classical continuum argument needs to be examined carefully in the
context of a quantum lattice model. Firstly, doR0(x, t) andR1(x, t) actually correspond to
orthogonal quantum states? For the spin model, if the region of rotation is spread out over
an odd number of sites, i.e., if the rotation operator is

U = exp

(
iπ

2m+ 1

m∑
n=−m

(2n+ 2m+ 1)Szn

)
thenR0(x, t) andR1(x, t) have opposite parities because under parity,

Szi →−Sz−i and U → Uexp

(
i 2π

m∑
n=−m

Szn

)
.

Since the sum contains an odd number of spins, the term multiplyingU is−1 for half-integer
spin and 1 for integer spin. Thus for half-integer spin,R0(x, t) andR1(x, t) are orthogonal
and the argument for double degeneracy of the spectrum is valid. This is just a restatement
of the Lieb–Schultz–Mattis theorem [22]. For integer spin,R0(x, t) andR1(x, t) have the
same parity and no conclusion can be drawn regarding the degeneracy of the state.

An alternative argument leading to a similar conclusion can be made following Haldane
[23]. We consider a tunnelling process between a zero-soliton configurationR0(x, t) and
a one-soliton configurationR1(x, t). (We choose coplanar configurations for convenience.)
Such a tunnelling process is not allowed in the continuum theory (which is why the solitons
are topologically stable) because the configurations have to be smooth at all space-time
points. But in the lattice theory, discontinuities at the level of the lattice spacing are
allowed. In terms of spins, this tunnelling can be brought about by turning each spinS(0)i
in configurationR0(x, t) to the spinS(1)i in configurationR1(x, t) by either a clockwise or
an anticlockwise rotation. Assuming that the magnitude of the amplitude for the tunnelling
is the same (as we will show below), the contribution of the two paths either add or cancel
depending on whether the spin is integral or half-integral. This is easily seen through a
Berry phase [24] calculation. The difference in Berry phase of the two paths fromS(0)i
to S(1)i is 2πS. Since the soliton involves an odd number of spins, the total Berry phase
difference is 0 mod 2π if S is an integer andπ mod 2π if S is half-integer.

To check that the magnitudes of the amplitudes for tunnelling are the same in the two
cases, consider the pair of spinsS(0)i andS(0)−i which need to be rotated toS(1)i andS(1)−i .
Sinceθ(x) = 2π − θ(−x), the magnitude of the amplitude for the clockwise rotation of
S(0)i to S(1)i is matched by the magnitude of the amplitude for the anticlockwise rotation of
S(0)−i to S(1)−i . Hence, for the pair of spins taken together, the magnitude of the amplitude
for tunnelling is the same for the clockwise and anticlockwise rotations.

Thus, tunnelling between soliton sectors is possible for integerS (thereby breaking the
classical degeneracy and leading to a unique quantum ground state) but not for half-integer
S (due to cancellations between pairs of paths). This agrees with the earlier Lieb–Schultz–
Mattis argument.



Field theories for frustrated antiferromagnetic spin chains 1837

Although the NLSM for the spiral phase was explicitly derived only forδ = 0, we
expect the same qualitative features to persist whenδ 6= 0, because the spin-wave analysis
shows that the classical ground state continues to be coplanar and there continue to be
three gapless modes (two with identical velocities and the third with a higher velocity [18]).
Hence we expect similar RG flows and a similar spectrum. However, the argument for the
double degeneracy of the ground state for half-integer spins depends on parity being a good
quantum number. Whenδ 6= 0, the Hamiltonian is not parity invariant and the argument
breaks down. This is in agreement with the DMRG studies [10] for periodic chains which
show a unique ground state, both for integer and half-integer spins, forδ 6= 0.

At this stage, we would like to point out some limitations of the NLSM studied by us
in the spiral phase. Firstly, the NLSM is unable to explain the phenomenon ofspontaneous
dimerization which is known to occur for a spin-1/2 chain withδ = 0 andJ2/J1 > 0.241
[8, 12]. A different nonlinear field theory has been developed recently which is better suited
for studying dimerization and also the caseδ 6= 0 [25]. Secondly, although the crossover
from Néel to spiral (defined by the position of the peak inS(q)) occurs classically at
J2/J1 = 1/4 for δ = 0, the crossover points for small values of spin are rather different,
e.g., J2/J1 = 1/2 for spin-1/2 and 0.373 for spin-1 [13]. This difference is presumably
due to corrections of higher order in 1/S which have been ignored in our NLSM. Thirdly,
our NLSM does not shed any light on the Z2 × Z2 symmetry and its associated string
order parameter which are known to play an important role in the spin-1 chain [26, 13]. To
conclude, spin chains with small values ofS exhibit some features which are not anticipated
from large-S field theories.

Finally, we examine small fluctuations in the collinear phase. The naive expectation
is that the field theory would be an O(3) NLSM, analogous to the Ńeel phase, since the
classical ground state is collinear. We can show this explicitly forδ = 1, which is called
the Heisenberg ladder case [27, 28]. The field theory here can be obtained in a way similar
to the derivation in reference [2] for the Néel phase. For a set of four neighbouring spins,
we define

φ(x − a) = S4i − S4i+1

2S
`(x − a) = S4i + S4i+1

2a

φ(x + a) = S4i+3− S4i+2

2S
`(x + a) = S4i+3+ S4i+2

2a

(9)

wherex = (4i+3/2)a is the midpoint of the set of four spins. We then write the Hamiltonian
in terms of the fieldsφ and`, Taylor expand to second order in space-time derivatives, and
integrate out̀ to obtain the Lagrangian density

L = (∂tφ)
2

2cg2
− c(∂xφ)

2

2g2
(10)

without a topological term. We now find

c = 4aS
√
J2(J2+ J1) and g2 = 1

S

√
(J2+ J1)/J2.

The absence of the topological term means that there is no difference between integer and
half-integer spins, and a gap exists in both cases for any finite inter-chain coupling, however
small. This is in agreement with numerical work on coupled spin chains [27].

In conclusion, we emphasize that this is the first systematic field theoretic treatment of
the generalJ1–J2–δ model on a chain. Although all experimental spin-chain systems known
to date, like NENP and Sr2CuO3, are in the Ńeel phase [14, 29], it would be interesting to
find an experimental system with sufficient frustration and dimerization to probe the spiral
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and collinear phases. The field theoretic treatment of the spiral phase leads to the prediction
of low-energy spin-triplet and spin-singlet excitations, in remarkable agreement with the
exact solution of the Majumdar–Ghosh model forS = 1/2 and with numerical solutions
of the general frustrated model forS = 1/2 andS = 1. It also leads to the intriguing
possibility that the low-energy excitations of integer-spin models may be massive spin-1/2
objects. To actually see these elementary excitations as ‘free’ particles, a finite external field
would have to be applied. It would be interesting to study the model with a finite external
field through numerical techniques like DMRG studies or even to look for such excitations
experimentally.
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